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1. Introduction 

In a previous report [l], we presented the results of our investiga- 

tion up to June, 1964 of waves incident upon a beachv Particular emphasis was 

placed on the wave height at the undisturbed shore-line and the motion of the 

shoreline, including the maximum run-up distance.       For  time harmonic 

waves of small amplitude incident from the open sea, formulas for these quantities 

were derived based upon the linear theory of water waves, "nie nonlinear theory 

was used to find the range of validity of these formulas. In addition a numerical 

method was devised for the calculation of the wave motion on the basis of the 

nonlinear shallow water theory. This method was applied to waves on a uniformly 

sloping beach. The results showed fair agreement with the analytical results 

for waves of low frequency but not for higher frequencies. 

Fran June 196^ to June 1965 we have improved the numerical method by 

using a finite difference scheme of higher order accuracy described in section 

3 of this report. With the improved method we have made extensive calculations 

which agree much better with the analytical results and which do so up to higher 

frequencies. However the discrepancies between the numerical and analytical 

results still occur at frequencies somewhat below those at which the analytical 

results cease to be valid. Although we have not found the cause of these dis- 

crepancies, we can conclude that at the lower frequencies the numerical results 

are reliable. Some of the results are described in section 5 of this report. 

We have also developed the analytical theory of wave breaking and bore 

formation and growth on a uniformly sloping beach. This theory is based upon the 

nonlinear shallow water theory. By employing the method of characteristics in 
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section 6 ve determine how an incident vave becomes distorted and finally reaches 

the breaking point« Then in section 7 ve utilize the theory of veak shock waves 

to determine how the bore foms and grc^s. This analysis, being based on the 

hypothesis that the wave is weak, cannot yield all the properties of the bore, 

especially those at the shoreline. Nevertheless it does determine how the height 

of the bore increases rapidly at first and then more gradually. It also determines 

the position and speed of the bore as functions of time. 

This theory of bore formation and growth on a sloping beach should 

form the basis of further theoretical and numerical investigations of water 

wave run-up. 
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2. Revlev of analytical results 

In order to compare our present numerical results with our previous 

analytical ones, ve shall first review the analytical results contained in our 

previous report. It is convenient to present those results in terms of the 

dimensionless variables which we have used in the numerical work. These dimension- 

less variables are the time, t, the horizontal distance x measured from the un- 

disturbed shoreline, the undisturbed water depth H(x), the disturbed water depth 

h(x,t), the shoreline position ^(t) and the horizontal water velocity u(x,t). 

They are related to the corresponding dimensional quantities t, x, H, h, £ and u 

by the scaling relations 

x = x D cot a,  h^hD,  H=HD 

t - tCD/g)1'2 cot a, u = u(gD)1/2,  £ = £ D cot a 

Here a is the beach angle at the undisturbed shoreline x = 0 and I) is a vertical 

length scale factor. It is to be noted that the horizontal length scale factor 

is D cot a. See Figures la and lb. 

We have found it convenient to choose D so that the dimensionless 

undisturbed water depth H is unity at x = -1. In addition the undisturbed 

depth is zero at the undisturbed shoreline. Thus H(x) must satisfy the two 

conditions 

2. H(0) = 0,   H(-l) = 1 

It is assumed that the water lies to the left of the undisturbed shoreline in 

the region x < 0 before the disturbance arrives. For a uniformly sloping bottom 

profile, the dimensionless undisturbed depth is simply 

3. H(x) = -x. 



-4- 

Let us assume that the incident wave height [h(x,t)-H(x)]   in the 

deep water far from shore, i.e., in the region x « -1, is given by a periodic 

sinusoidal wave 

h. [h(x,t).H(x)Jlnc = a cos(ut.ßx) 

Here the dimensionless angular frequency w, the dimensionless wave number ß and 

the dimensionless amplitude a occur. They are related to the dimensional angular 

frequency u and amplitude a by the relations 

5. w = I5(D/g) '  cot a, a = a/D,  ß = ui g""T) cot a = ^ tan a. 

The amplification factor A is defined as the ratio of the maximum water depth at 

the undisturbed shoreline to the amplitude of the incident wave far from shore. 

Thus 

6. A = max|h(0,t)/a| 
t 

We have previously determined A for water of slowly varying depth. This 

means water for which the fractional change of depth in a wavelength is small 

except near the shoreline. When this condition is satisfied and  lim H(x) = 1, 
x -* -» 

we find that A depends only upon w and a and is given by 

7.      A(a),a) = \/|* ( tanh z + 
z 

cosh z 

N 1/2 

2        2 Here z , a function of w tan a, is the positive loot of the equation 

2  2 8.      z tanh z - w tan a 

In this case it is not required that H(-l) « 1 since D is chosen as the undis- 

turbed depth at x = -«. Graphs of A as a function of w for various beach angles 

a, based upon (7), are given in Figures 3 and 7. I^e limit of A(uj,a) as a tends 

to zero is easily found to be 
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9.     A(ü),0) = V^wö 

Since the result (9) applies when w is fixed, it follovs from (5) that Z tends 

to zero as a does. Therefore (9) is the asymptotic form of (7) for low frequencies 

ülie result (7) was obtained in two ways. First it was deduced from the 

linear theory of water waves in water of any depth. Ihen it was rederived by 

matching the result of the linear theory in deep water to the result of the non- 

linear shallow water theory employed near the shore. The latter derivation 

also yields a limitation on the incident amplitude for the result to be valid. 

It implies that the amplified wave height be small compared to the wavelength. 

Analytically the condition is 

10.     a < a 
- max ^2./  x 

w A(u),a) 

Here A is given by (7). Graphs of this limiting amplitude as a function of w are 

shown in Figure k for various values of a. 

Th*  result (9) was also derived in another way. It was shown to be 

the high frequency asymptotic form of the amplification given by the linear shallow 

water theory in water of arbitrarily varying depth. Thus the result (7), which is 

valid for high frequency waves, has a low frequency asymptotic form which is the 

same as the high frequency asymptotic form of the result of the shallow water 

theory, a theory which is valid for low frequencies. Ullis shows that the two 

results are asymptotically equal in some intermediate frequency rarge, as one 

should expect and that the two results supplement each other. 

For very low frequencies, the linear shallow water theory yields 

11.     A = 2 + 2wb + ... 
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Here b is defined by 

00 

12.     b = / x[H"1(x)-H"1(oo)]dx 

In the special case of a piecewise linear bottom profile, the equations 

of the linear shallow water theory can be solved explicitly for all frequencies. 

We have considered the special case in which 

13.     H(x) = -x,  -1 < x < 0 

= 1,   x < -1 

In this case the amplification is given by 

in.     AKa) = 2^l2.^ +4.2.^ .1/2 

Here J and J. are Bessel functions of orders zero and one respectively. This 

function agrees with (ll) for small values of w and with (9) for large values of w. 

A graph of A based on {lk)  is shown in Figure 3 for a = 0. It is clear from (ih) 

that when a is small, A is practically independent of a. 

On the basis of all of the preceding results, we can formulate an over- 

all description of the amplification as a function of frequency and beach angle. 

At zero frequency the amplification is two and then it increases quadratically 

with the frequency as is shown in (11). It continues to increase (see Figure 3) 

in a undulatory manner as is shown by (1^), with an undulation frequency determined 

by the horizontal scale of the bottom profile. It undulates about the curve 

l/2 
A = (UTTW) ' , which it approaches as ^ increases. Then the amplification con- 

tinues Increasing at the slower rate given by (7). This latter transition 

shows that as the water depth becomes appreciable compared to the wavelength, 
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it has '.he effect of diminishing the amplification. 

The gradual increase of amplification with frequency Just described 

applies only until bore formation occurs. The amplitude at which this occurs 

for any given frequency is given by (10). 

A cuantitative theory of amplification and run-up when bores form has 

not yet been developed. 

3. Formulation of the general problem 

The  finite difference calculations are based on the same nonlinear 

shallow water theory formulation presented in [ij, which we repeat here for 

completeness. 

In terms of the variables (l.l) the mass conservation equation is 

1. ht + (uh)x = 0, 

and the linear momentum conservation equation is 

2. ut + uux = (H-h)x . 

If the location of the shoreline at time t is denoted by x = 4(t), then since 

the water depth there is always zero we have 

3. h[4(t),t] = 0. 

In addition the velocity of the shoreline must be equal to the water velocity 

at the shoreline so 

U. ^I|ii:uft(t),t]. dt 

Equations (3) and {k)  are boundary conditions which must be satisfied on the 

moving shoreline. 
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We shall consider the motion only in the interval -1 < x < 4{t) for 

t > 0 since we assume that known (subsonic) waves are incident from x < -1 

for all t > 0. If the local sound speed is denoted hy c = v/h then (l) and 

(2) can be written in characteristic form as 

5. (u + 2c)t + (u + c)(u + 2c)x = Hx 

6. (u - 2c)t + (u - c)(u - 2c)x = Hx. 

Equation (5) determines (u+2:) along the "positive" characteristics, dx/dt = u-fc, 

which, as t increases, enter x > -1 froru x < -1. If the linear shallow water 

theory were valid for x < -1 and H(x) = const = 1 there, then the general solution 

would be 

u = F(t-x) + f(t+x), 

h -1 = F(t.x) - f(t+x). 

In the linear theory we use c = >/h = 1 +  (h-l)/2 and so 

u(x,t) + 2c(x,t) = 2[l4F(t-x)]. 

Clearly the function F in this equation represents the incident part of the linearized 

wave motion, Thas we "cake for the boundary condition to be imposed at x = -1: 

7. u(-l,t) + 2c(-l,t) = 2[i + F(t-l)J 

The water is to be at rest initially so that 

8. h(x,0) = 0,  u(x,0) =0   in -1 < x < ^0) = 0. 

Our problem is thus: to solve (l) and (2) for u(x,t) and h(x,t) in -1 < x < |(t) 

for t > 0, subject to the conditions (3) and (k)  on the unknown boundary x = £(t), 

the condition (7) on x = -1 and conditions (8) at t = 0, The shoreline position 

4(t) must be determined simultaneously. We shall study only motions in which bores 

are not present. 
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4, Finite difference scheme. 

The numerical method which we employ is of higher order accuracy then 

the one previously employed in [l] and is based on the Lax-Wendroff scheme [2]. 

Again we use a uniform spatial net, x. = JAx and possibly non-uniform time net, 

t. .. = "tj. + At,. The computed shoreline position at time t, is denoted by 

iy  = i(\)  an(i then x  /jv is defined as the net point for which 

^      Xs(k) +f<kl XS(k) + ¥ ' 

The calculations at time t. . are then divided into four kinds for four different k+1 

types of net points, as follows: 

I) Interior points: x.. < x. < x /,> 

II) shoreline jnterior points: x4 = x / x 

III) incident wave:  x , 

IV) shoreline:  4k+1* 

At points of type I and II (see Figures 8a,b) we use high order 

accuracy difference approximations of the equations of motion (3.1),  (3*2). 

Rather than write down the messy difference equations, which are not instructive, 

we shall indicate the expansions from which they are easily deduced: llius at 

any point P of Figure 8a or 8b an application of Taylor's theorem yields 

h(P) =h(P') +Atht(P') +^-htt(P') +0(At3), 

u(P) =u(P») +AtutfP') +^rvtti*')  +0(At3). 
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Using (3»l) and (3«2) ve can eliminate u. and h. on the right hand sides above. 

Also, differentiating (3.1) and (3.2) with respect to t, we can eliminate u.. 

and h.. to get finally 

^    I    A4.2 >. r ^/ v,\    ^(i u24h-H)1 
2.   h(P) = h(F) - At IJ (uh)| ^ + ^ ^|u 2gi + h -g-g. J ^ + o(At

3) 

3.   u(P) = u(P') - At |j(| u24h.H) 

1 2 „^^•«^-l*^, 
We now use u, h and H at the points L1, P1 and Rf to approximate the x-derivatives 

appearing on the right hand sides of (2) and (3). Since the spacing is uniform 

p 
for points of type I these approximations are easily obtained to accuracy 0(^x") 

by using centered difference quotients. For points of type II the spacing is in 

general non-uniform. However the terms multiplying At are first derivatives 

p 
and so can again be approximated to 0(AJC ) using data at three points. The 

remaining terms are approximated to within 0(Ax) but since they are multiplied 

p 
by At we retain third order accuracy. One should have no difficulty in deriving 

the difference equations from the above description. 

The difference equations at points of type III, see figure 8c, are 

identical with those used previously (see eqs. (37) and (38) of [l]). They are 

difference approximations of the characteristic equation (3«6) centered at the 

midpoint of the mesh rectangle in figure 8c. Combined with (3-7) these equations 

yield u(P) and h(P) to third order accuracy. 

To fit in the position of the shoreline to higher order accuracy we 

again note that 
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2 
e(t4Ät) = üt)  + At (it)  + Ä- '(it)   + 0(At3) 

However from differentiating (3-^) and using (3.2) at x = £(t) ve have 

k. i(t)  = [H(x) - h(x,t)]. 
*4{t) 

so that, recalling (3.4), 

5.   i(t-h^) = e(t) + At u(e(t),t) + ^"[Hx(e(t). hx(e(t),t)]+ o(At3) 

Wie x-derivatives in (5) can be approximated, using H and h at points P1 and R1 

of figure 8b, to accuracy 0(^x) and so if u(5(t),t) is computed to accuracy 

p 
0(^c ) we get 5(t-»At) = ^(R) to third order accuracy. To compute u(^(t-»At) ,t4At) 

we use (3.4) and (k)  to get: 

6.  u(4(t4At),t-fAt) =u(£(t),t) +At[Hx(5(t))-hxU(t),t)] +0(At2) 

ThuB with the same approximations to x-derivatives used in (5) we obtain u(R), 

see ficure 8b, to second order accuracy. 

The  stability condition and interpolation procedures (for £, , > x .. + —) 

of [l] are also employed but we do not repeat them here. 

5. Results of the calculations 

In all of the calculations we used the uniformly sloping bottom profile 

(2.3) and uniform x-spacing, Ax = l/200. Ihe incident wave function used in 

(3.7) was 

1.      F(t-l) = a sin u)t. 

Calculations were run for various values of the amplitude F and frequency w in 

the following ranges: 10"3 < a < 8 xlO"3, 1 < w < 10. Each case was run until 
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at least 10 and perhaps as many as Ik full period waves had reached the shoreline. 

In most cases all significant transient effects were absent after 5 or 6 periods; 

however in some cases a steady regime was never attained. 

IVpical cases in which time harmonic steady states were established 

are shown in figure 2. In figure 2 graphs of ^(t)/a are shown for two cases 

-•a 
in which a = 10 ^ and w = 2 or ?• The steady state periods in these cases are 

just n or 2rt/7. After about the first 1^ cycles of shoreline motion the zeros 

of ^(t) have these periods. Significant motion of the shoreline is not observed, 

in either case, until about t = 2. However this is just the time required for 

a sonic disturbance to propagate from x = -1 to x = 0 over the bottom profile 

(2.3); i.e. 

■/ i-i J    3x7 
-i -i 

The fact that the signals actually arrive slightly sooner may be attributed to the 

effects of the nonlinearlty, near the shoreline, which increase tne characteristic 

speed (and to a small numerical effect). These figures also show that the maximum 

steady state runup distance may be exceeded by some of the initial, transient, 

runups. 

For comparison with the theoretical results we define the computed 

amplification as 

P      * .   max       Eft) 

T<t<T+—   a 

u) 

where T is some "large" time. If this quantity varies slightly with T we may 

use an average over several periods. In Table I we list this amplification as 
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vell as the corresponding miniraum shoreline excursion for a variety of cases. 

When the variation of these quantities over the last three computed periods was 

not small (say less than 5 ?>) ve list the range of observed variation. Thus, 

for example, the case OJ = 8 and a = 10"3 did not quite reach a steady state 

and the amplification varied between 12.9 < A < 1U.2 in the last few periods. 

The first column of Table I is plotted in figure 3 together with 

theoretical amplification curves for a = 0 and a = tan" l/lO. The agreement 

is very good up to w = 6 (for the a = 0 curve) and should be contrasted with the 

previous calculations (in figure 5 of [l]). As is shown in this figure and in 

the table, there seems to be some kind of "resonance" near u = 6.5 since the 

amplification becomes very large there.  (There are lesser oscillations near 

a) = 4 and (*) = 5-5) Beyond this resonance the computed amplification values 

seem to lie along a curve considerably above the theoretical values of a = 0. 

Of course as the frequency increases bores will finally form and the 

-•a 
present calculations must fail in these cases. For a = 10 J and w = 7 the results 

show quite clearly (see figures 2b and 6) that nothing unusual happens and in fact 

that bores do not yet form. We have shown in figure k  the frequency at which 

the calculations seem to indicate that bores form for various values of incident 

wave amplitude. The criterion used was not the wild oscillations in or unsteady 

behavior of ^(t)/a but rather the occurrence of negative values of h in the 

calculations. This is of course not a precise determination and so the agreement 

with the theoretical limit of equation (2.10) is quite gratifying. 

In figure 5a we show the initial wave, for OJ = 2 and a = 10 , as it 

approaches the shoreline. The  amplitude is seen to grow slowly till the wave 
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tront reaches the shoreline and then the growth Is much more rapid. Less obvious 

in this figure is the decrease in wavelength due to the increasing local sound 

speed. Some steady state wave profiles for this case are shown in figure 5b. 

The  arrows attached to the curves indicate the direction of the water velocity 

at the corresponding locations. (The scale on these figures is such that the 

bottom profile has slope ICr and thus appears almost vertical.) 

Figure 6a and 6b show corresponding wave profiles for w = 7 and a = 10"^. 

The shortening of the wave length is clearly illustrated here. The local wave- 

length, L, at a position x is, in the linear theory, 

3. LOO . is C(X) = §« |xll/2 
y üj 

As a rough check we examine the curve in figure 6a for t = I.765 (or cyle No. 500) 

Calling the distance between two successive nodes or two local extrema a half 

wavelength, L/2, and comparing this to the theoretical results (3) evaluated 

at the midpoint of the two points in question we get: 

X 

.' computations 

-.808 -.636 -.^75 -.33^ -.220 '.12k -.06k 

.710 .716 .619 .h9k Mo .3^6 .226 
1 L < 

^ linear theory .807 .716 | .620 .519 .k22 .317 .227 

Somewhat better agreement can be obtained by replacing (3) with average local 

wavelengths defined in 

x+ ̂ 1 

J cTxT = u • 
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a = 10 -3 a = 2 x 10 -3 a = ^ x 10 -3 a = 6 x 10'3 

u max mln 

1.0 

1.5 

2.0 

2.5 

3.0 

3-5 

lf.0 

^.5 

5.0 

3.23 

k.68 

k.96 

5.36 

6.35 

6.61 

7.0/7.9 

7.69 

7.87 

max mln max mln max 

k.96 

6.35 

-4.98     i  4.95 

-6.1*7 ;i 6.30 

7.18 

-4.99 i k.9k 

.6.42 6.20 

5.5 :| 7.0/8.2 

6.0 8.21 

6.5 j' 25/125 

7.0 I  11.8 

7.5 !j 12.4 

8.0 Ij 12.9/14.2 

9.0 I 5.4/44 

10.0 I 43/80 
JL 

mln 

-5.00 

-6.U8 

-7.13       7.V7.9 !    -6.6 

-3.23 

-U.68   1 

-'».97 

-5.38 

-6.36 

-6,75 ; 

-7.l/-7.7:    6.89 -7.00 

-7.77   :: ; \ , 

-8.07        7.70 -8.15       11.2/18     -7/-IO.5J  8.2/30       '3.4/.18.7 

-8.4                       ! i- 

-9.45    iil2.4/14.3. -6.l/-9.i{' 5.8/33     -4.2/-22i 

-22/.70 j       i        ; 

-8.5  1 50/53  ' -28/.30 

-9.3  j       , 

-9.1/10.4'1 

il 
-14/-47 I1 

-lß/.43       I 

Table I 

Maximum and minimum shoreline excursions in "steady1" state 

and min 
T<t<T4P 

iCÜ 
for T "large" and P at least a period .1 

[i.e. max 
T<t<T4P a 
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6. The breaking of waves 

de theory of wave amplification reviewed in section 2 concerns the 

case in which the waves do not break and bores do not form. But the excluded 

case is the most important one in the study of tsunamis, since experience shows 

that they always form bores. Therefore we shall now present a theory of wave 

breaking with the consequent formation and growth of a bore. We shall base our 

analysis on the nonlinear shallow water theory, assuming the motion to be in a 

plane and the bottom to slope uniformly. The main mathematical technique to 

be used is the theory of characteristics, which will be combined with the theory 

of weak shock waves. 

A qualitative description of wave breaking based on the nonlinear 

shallow water theory was given by H. Jeffreys in 193^- It is that the higher 

parts of a wave travel faster than the lower parts so that the wave steepens as 

it propagates and ultimately breaks. This explanation was repeated by J. J. Stoker 

[3] and illustrated by the calculation of a wave profile at successive instants, 

showing how it steepens. Stoker also calculated the time and place at which the 

profile becomes vertical at some point, which is the time and place at which 

breaking may be said to occur. These calculations were for wares in water of 

constant depth. 

In this section we shall also calculate the wave profile at successive 

instants, and determine the time and place at which breaking occurs, for waves 

on a uniformly sloping beach. In the next section we shall determine the manner 

in which the height of the resulting bore grows as It propagates toward shore. 
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We begin by writing the equations of the nonlinear shallow water theory 

in characteristic form as follows 

1, (u + 2c)t  + (u + c)(u + 2c)x - ghx = 0 

2, (u - 2c)t + (u - c)(u - 2c)x - ghx = 0 

For a imiformly sloping bottom h is constant. Therefore we write gh = -m where 

m is a positive constant. Now (l) and (2) can be integrated with the result 

(see [3]i p. 29h) 

3, u + 2c + rat = K = const.  on C defined by ^T = ^ + c 

h.      u - 2c + mt = k = const.  on C defined by — = u - c 

The curves C and C are called characteristics. 

From (3) and (k)  we find 

5. u = i (k. + k ) - mt 

6. c = J (k+ - k_) 

Now the equations for the characteristics can be written 

7-        ;ft = K + K-mt on c
+ 

8.      g = J k+ + J k^ - mt        on C_ 

The constants k and k^ can be determined from (3) and (h)  if the values 

of u and c are known at some point on each characteristic. For example at the 

shoreline x = ^(t), we know that c = 0 and u = d^/dt. Therefore if a character- 

istic touches the shoreline at t = t , we have on it 
s 
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de(t) 
9-       k

+-
BtB+-dt- 

If the shoreline is at rest, (9) becomes 

10.     k = mt +   s 

In a region of the water which is undisturbed we have u = 0 and 

c = \/-mx . Therefore the undisturbed characteristics satisfy the equation 

dx 
11.     TT = + /-rox   on C. at   — ' + 

The solutionsof (11) are 

12.     t - t = + ~ o  - m (.mxo)
1/2.(-nix)1/21    on  C+ 

Let us now consider a C characteristic which crosses a family of C 

characteristics all of which have come from the undisturbed shoreline ^(t) =0. 

Then from (10), k = mt on them so (5)-(7) become —    s 

13,     u = r(k+ + mt ) - mt 

Ik. c = |(k+ - mts) 

We new make the basic assumption of the theory of weak waves, which is 

that the C^ characteristics are undisturoed. Then their equations are given by 

(12) with the lower sign. Since they touch the undisturbed shoreline, we may 

set to = t and x = 0 in (12). In this way we get t in terms of x and t. Then 

by using this expression for t we can rewrite (13)-(15) as s 
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,x 1 .   rat  /  .1/2 
16.     u = 2 + " ~ " (^ 

18-    i =! (k+ -
mt) - JM1/2 

To solve (18) we introduce T and Z(T) defined by 

l/p 
19.     T = rat - k^    Z(T) = (-rax) 

Then (18) becomes 

20-     dx "" 8 z + U 

Since (20) is a homogeneous equation, it can be solved by introducing U(T) 

defined by 

21,     U(T) = T"1 Z(T) 

In terras of u, (20) becomes 

The variables are separated in (22) so it can be integrated to yield 

.1 * 3/5      1 2/5 
23. T ■L = A1(U - J)    (u + i) 

Here A.. Is an arbitrary constant. 

Upon eliminating u by means of (21) and simplifying, we can write (23) as 

24. (Z . Jl) (Z + I) .A 

Here A is another constant. In terms of t and x, (2U) becomes 

i3r ui2 

- A a5.   [(^^.^^j^x/^!».^' 
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The constant A can be expressed in terms of some point x , t on the character- o' o 

istic, ani ^25) can be rewritten as 

26.    [(-ncc)^. 3«t + %]3[(HI1X)V2 + |t . ^t]2 = 

1/2   >t       3k13r l/2   mt       k]2 

The constant k+ is given by (3) in terms of the values of u and c at (x , t ) as 

27. k+ = u(xo,to) + 2c(xo,to) + mto 

Thus u and c at any point (x,t) satisfying (26) are given by (16) and (17), 

with k+ given by (27). 

To solve (26) for x in terms of t, we first define f-(x ,t ) and loo 
f(xo,to) by 

28. c(xo,to) = (-mx^
1/2 + f(xo,to) 

29. f(xo,to) = u(xo,to) + 2f1(xo,to) 

Now if f(x ,t ) = 0 the squared term on the right side of (26) vanishes. By 

equating to zero the squared term on the left side of (26) we rederive the 

equation (12) for an undisturbed C characteristic. 

Now let us suppose that f(x ,t ) is not necessarily zero, but is small. 

Then we may expect the characteristic (26) to differ only slightly from the 

undisturbed characteristic (12). Hierefore we shall try to express it in the 

form 

30.     t - to = ^(-nx//
2 - (-mx)1/2] + q 



-21- 

Here q is to be determined by substituting (30) into (26). By keeping terms of 

the zeroth and first powers in f(x ,t ) we find that 

31. q = - i f (x , t ) ^   m v o' 0' 

3/U 

li -ü  . 1 

Thus for small motions, the C    characteristic is given by 

VN3A 

32. t-t   = ^[(-mx )1/2.(-mx)1/2J- i f(x ,t ) 0     mLV      o'        v      '     J    m    ^ o* o' -2'      -1 WL\X 

We may now use (32) in (16) and (17) to obtain u and c on the C 

characteristic (32), with the results 

x ,3A 
33.    u(x,t) -|f(x0.t0)l^ 

3^. :(x,t) = (-mx)
l/2 + I f(xo,to) [^ 

l/k 

©lese results are not valid near x = 0 because there it Is not correct to omit 

higher order terms, as was done in deriving (31)» In fact the full expression 

(26) for the C characteristic leads to finite values of u and c everywhere 

including x = 0. 

It is easy to see from (32)-(3^) that wave crests steepen in front anu 

become vertical as they approach shore. To show this, let us evaluate u (x,t) 

assuming that the initial values of u and c are given on the line x ■ constant. 

Then from (33) we have 

35.     ux(x,t) - - I f(xo,to)xf x-^A ♦ i ft (x^Kx^ ^J 

Now from (32) we find 
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dt 
36.    - ^U (^)-V2 + i^ f(x ,t )X3A X-7A . i . (X ,t ) |i^3 '.ifc 

dx   x  '     % v o' o7 o        m t ^ o* o' \x       dx 

Solving (36) for dt /dx yields 

3T.     ^ iKf^)37'-1]-1*1 (-)"1/2- 
3fx3/^ x-7A 

O 

km 

We see from (37) that dt /dx becomes infinite when the denominator vanishes which 

occurs if u +2f, > 0. Then from (35) > u also becomes ininite. The value of 
U     o X o   o 

x at which this occurs is found from (37) to be 

38.     x = x0 he -I-V3 
CH 

The time at which this occurs is obtained from (32) by inserting the value (38) 

for x. The first occurrence of an infinite value of u is determined by the value 

of t which minimizes t. Exactly the same type of consideration applies if the 

initial values of u and c are given at t = constant or on any other curve in 

the x . t plane. o7 o 

When u becomes infinite, c also becomes infinite. The first occurronoe X ' x 

of this vertical slope for a given wave is called breaking of the wave. There- 

after the solution (32)-(3U) is multiple valued. This multiple valuedness can 

be eliminated by the introduction of a discontinuity, called a bore, into the 

subsequent wave profile. We shall now show how this is to be done. 



-23- 

7. 15ie formation and grovth of bores. 

A bore is a discontinity in ' \ter depth and velocity across which two 

f1\anp conditions must be satisfied. These are  the mass and momentum equations 

which may be written in the form 

1. (^ +h)(u1 - h)  = (n2 +h)(u2 - S) 

2. (Tll4h)u:L(u1-§)+ fC^-rti)
2 == (Tl2"rti)u2(u2.S)+ |(T]24h)

2 

Here T) and u1 denote the wave height and water velocity on side one of the bore, 

s is the bore velocity and T) , Up denote quantities on side two. From (l) and 

(2) we find for a weak bore, i.e., one for which |TU-TI | « h, 

3-      ä = u- + Tgh 

k. +... 

If the fluid crosses the bore from side two to side one, the plus sign applies 

in (3) and (k),  and side two is called the front. 

When side two is the front, we find from the definition of c and from 

(k)  that 

% c14u14c2^2 = 2 u0 + 7gh ' 1 + 
3\-\ 

+ ... 

Upon comparing (5) with (3) in which the plus sign is chosen, we find that 
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dx,  dx. 
6. 8 = 1(0^^^) +... =|^-a + _j+... 

Thus the speed of a weak bore is the average of the C characteristic speeds 

on its two sides. TMs result also holds in gas dynamics and in certain other 

cases. 

The  expression (6) for the velocity of the bore, together with the 

expression (6.32) for the C characteristics suffices for th^ determination of 

the locfition of the bore as a function of time. To determine the bore location 

we again use the notation z = (-mx) '  and we also Introduce c = — . We 

assume that the incident wave is given at x = x which corresponds to z = z . oo 
Suppose that two C. characteristics which leave x = x    at t = t.  and t = t^ 

+ O        i 2 

with t > tp, meet at the bore. The equations of these charact-eristies are 

given by (6.32) with t replaced by t., or t . In terms of z and a these equations 

are 

7. a + z - zo = al " I rio.jlizjz)^2  - l] 

8. a +z - zn = a. - | f(aj|(z /z)3/2 - l] 

Here f(aJ denotes f(xo,t1). 

Let us write the equation of the bore in the form 

Q,      a + z - z = G(z) 

To determine G(z) we first combine (7) and (8) with (9) to obtain 

10. G(z) *al  - I^a^^z^z)3/2-!] 

11. G(z) =a -if(a )[(zo/z)
3/2.l] 
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Next we wish to utilize (6). Before doing so we observe, from the definitions of 

z and o,  that 

,0      .  dx    2z dz    dz 12.     s= — =- — Tr=-z — au   m at    aa 

Now from (9) 

13. 
dz 
do ' 

1 

(J'(z)-l 

Thus (12) and (13) yield 

-1 - G'(z) 

Ik. s = z[l + G'Cz)] 

To obtain dx^dt and dx /dt we differentiate (?) and (8) to find 

16. ^ = -z ^ = -z{.l+ I f(o2)Zf z-5/2)-l. zfl+ J f(02)z3/2 2-5/2) 

Upon using (li4-)-(l6) in (6) we obtain 

17. 2G'(z) =: I z^J2  z-^ff^+f^)] 

The problem is now that of solving (10),(11) and (1?) for a,, ap and 

G as functions of z. To solve this problem we follow the method of G. B. Wltham 

[^]. We differentiate (10) and (11) with respect to z and add the results, 

obtaining 

18. 2G-(Z) = J z3/2 z-5/2[f(0i)+f(02)j + ^i (l- i f'^lizjz)^  - ij } 

do 

*dr[1-if'^2^zJ^/z -^ 
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By taking account of (17), we can simplify (18) to 

I 
To eliminate z from (19) we subtract (11) from (10) and find 

20. (SoA)3/2 - 1 . ^^f^ 

Nov (19) can be rewritten as 

do-, ff1  - Gp da a,   - a^ 

21. äT -1 - f,<°i) fT^ff^l    4 dT -1 -f'^2) f^Tffep     =0 

It is convenient to multiply (21) by f(a,)-f(ap) and then to earrange 

it in the form 

dcu       daT  , , 
22-     f(a2) ^ - fioj  "^ = | fe ([a2-a1][f(c2)+f(a1)J) 

Integration of (22) yields 

02 

23-        j  f(a)do = | (a2-o1)[f(ö2)+f(a1)] 

Ool 

The constant of integration in (23) has been chosen so tha^ ^23) is satisfied 

fey CK = ap, which corresponds to the first point on the path of the bore. The 

condition (23) determines the correspondence between a, and a ,    The gecxnetrical 

interpretation of (23) is that the area bounded by the curve f(a), the a-axis end 

the lines o - o, and o = a^ is equal to the area of the trapezoid with vertices 

at [a,, f(a1)], [p*, t{oJ^t  [p^  o] and [a^, 0]. A3ternatively we may say 

that the signed area between the curve f(o) and the chord Irom [CK , f(a-j)] to 
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o , ^(öp)] is zero. Thus the chord must cut off equal areas on the two sides 

of the curve. 

Once ap is determined as a function of a-, from (23), the path of the 

bore is found by eliminating G(z) from (9) and (10) to obtain 

2k. a-a^ z- zo = - I f(o1)[{zo/z)
3/2 - 1 

Now z is given in terms of 0, and 0   by (20). Thus (20) and {2h)  are parametric 

equations for the path of the bore with a, as parameter. These equations nay 

be written more explicitly in the form 

-2/3 

25. z = z o 1 + 
2^ - a2) 

f(a1)-f(a2) 

26. 
a1 - a2 

a = a1+ zo - z - f(a1) J^JZ^) 

The discontinuities in u and ; can be found frotr. (6.33) and (6.3^), 

They are 

27. 

28. 

1    zo uru2 = 2 r 

1,    o 

3/2 

3A 

■f(a1)-f(a2) 

vc2-5i,r,    Lf^i)-f^2)] 

By using (20) we may rewrite these results as 

29.     u1- u2 = c1- c2 = a1- a2+ |[f(a1)-f(ö2)] 

The equation (23) can be solved readily for j in terms of c, if f(a) 

is an odd function, i.e., if 
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30.     f(-a) = -f(a) 

It is then easy to see that the solution of (23) is 

31- a2 = -o:L 

Then (25), (26) and (29) become 

1-2/3 

32. z = z 
2a. 

1 + f^yj 

33. 0 = z^ - z o 

>. Ul"U2 = Cl"C2 = 2al + f^al^ 

To illustrate the results (32)-(3^) let us apply them to a sinusoidal 

incident wave for which 

2na 35.     f(a) = A sin ^ 

Then (32) and (3V, become 

36. z = z 
2o. 1-2/3 

1 + 

A sin 
, 2^0" 

37. 
2^ 

Ul" u2 = Cl" C2 = 2a1 + A sin ^—- 

We can simplify these formulas by introducing in place of a1 the parameter 6 

defined by 

38. 
2*0.. 

5 = 

Then (36) and (37) became 
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39-     z = 2o[1+^'^] 
-2/3 

kO. Vu2 = c^cg = A[^ 8 + sin RJ 

T -2/3 
From (39) we find that the bore forms at z = z (1+ —)  where 5=0 

and travels toward the shore z = 0 which it reaches when 6 = n. Prom (33) we see 

T -2/3 
that the bore path is an undisturbed C, characteristic starting at a = z -z (1+ —7) 

and reaching the shore at a = z . The maximum discontinuity across the bore 

occurs at 8 = cos" (-T/ita) provided T/nA < 1, and its value is 

/ r ' 2]1/2 
kl. u^ = c.-c^ = A/^ cos'1 (£  + [l- {1L} _ 

If T/JCA > 1, the maxiinum discontinuity occurs at 5 = ir i.e., at the undisturbed 
^T tan a 

shoreline, and its magnitude is T. In terms of the original variables T =  

where a is the beach angle and T is the period of the incident wave. 

When T > rtA the ratio of the maximum bore discontinuity to the incident 

amplitude is T/A = gT tan a/2A. Thus this factor, which we may call the velocity 

amplification, increases with the period of the wave and with the beach angle. 
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